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as C(wy,wy,...,w,, V), defined as the minimum level of cost for any set of in-
put wages wy , W,,...,W,,atagiven level of output vy, so that
n
C(wy,Wy....,w,,v) solves minC = 2 wX;
XioXge X J=] *#(8.2.57)
such that vy = f(xy,X,,....X,;)

For the cost function, the optimal factor inputs satisty

\ - oC #(8.2.58)
aW]'
where, since the cost function is concave in wy,
; 3%C
% _9C <o *(8.2.59)
aW,' aw}"

as in (8.2.37). The cost curve of (8.2.14) then corresponds to the cost function
with given input wages

C() = COWy, Was o oo s Wi Y. %(8.2.60)

Of these various functions, the ones most frequently estimated using econo-

metric techniques are the production function (8.2.1), the cost curve (8.2.14),
factor demand functions (8.2.28), and the cost function (8.2.57).

8.3 Estimation of production functions

A basic problem in applied econometrics is that of estimating the production
function, representing the technological relationship between output and factor
inputs.’® In most empirical applications the production function gives output y
as a function of only two homogeneous inputs—labor L and capital X:

y = f(L,K). *(8.3.1)

Data for the estimation include cross-section or time-series data on some or all
three variables and related variables, such as prices and wages. Output is typically
measured as value added per year, deflated for price changes in time-series
studies. It can also, however, be measured as physical units of output per year or
gross value of output per year. The inputs should, in theory, be measured in
terms of services of the input per unit of time, but such data are generally not
available, so they are instead typically measured by the amount of the input

10For surveys of production functions and their estimation see Walters (1963, 1968), Frisch
(1965), Hildebrand and Liu (1965), Nerlove (1967), Solow (1967), and Ferguson (1969).
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utilized or available in the production process. Labor input is typically mea-
sured as manhours employed per year, but it is also sometimes measured as
number of employees. Capital input is typically measured by the net capital
stock (net of depreciation), but it is also sometimes measured by the gross capi-
tal stock and by certain direct measures (e.g., number of tractors in use for agri-
culture). Among the other inputs that could be included in the production
function are raw materials, fuel, and land. Furthermore, labor and capital can be
disaggregated, e.g., into skilled and unskilled labor and, for capital, plant and
equipment.

Of these variables the one that creates the most problems is the capital input.
While data on output and labor are generally available, data on capital are either
not available or of questionable validity. Enormously complex problems of
measurement arise with respect to capital as an input to the production process.
First, capital generally represents an aggregation of very diverse components,
including various types of machines, plant, inventories, etc. Even machines of
the same type may cause aggregation problems if they are of different vintages,
with different technical characteristics, particularly different levels of produc-
tivity or efficiency. Second, some capital is rented but most is owned. For the
capital stock that is owned, however, it is necessary to impute rental values to
take account of capital services. Such an imputation depends, in part, on depre-
ciation of capital. Depreciation figures are generally unrealistic, however, since
they entail both tax avoidance by the firm and the creation by the tax authorities
of incentives to invest via accelerated depreciation. Third, there is the problem
of capacity utilization. Only capital that is actually utilized should be treated as
an input, so measured capital should be adjusted for capacity utilization. Accu-
rate data on capacity utilization are, however, difficult or impossible to ob-
tain.!! Other problems could be cited as well, but all these suggest that, if at all
possible, the use of an explicit measure of the capital stock should be avoided,
since it is virtually impossible to find data adequately representing capital stock.

To estimate the production function requires the further development of its
properties, leading to the specification of an explicit functional form. In particu-
lar, it is generally assumed that the production function satisfies the properties

f0.K) = f(L,0) =0 (8.3.2)
af df
>0 Yy (8.3.3)
oL 3K
22 f 32f o2 f o*f [ 9%\ °
<o, % <o LT (f__> > 0. (8.3.4)
dL* IK*? dL* 3K* oL 3K

' One approach to capacity utilization is to assume that the percentage of capital utilized is
the same as the percentage of labor utilized, and therefore to reduce total capital available
by the (labor) unemployment rate. There are various problems with this approach, however.
For example, to the extent that capital is owned, the cost of using unemployed capital is

less than that of using unemployed labor, suggesting that labor unemployment might exceed
capital unemployment.
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Here (8.3.2) indicates that both factor inputs are indispensable in the production
of output, (8.3.3)states that both marginal products are nonnegative, and (8.3.4)
states that the Hessian matrix of second-order partial derivatives of the produc-
tion function is negative semidefinite, ensuring the proper curvature of the iso-
quants.

The production function (8.3.1) can, in certain cases, exhibit certain refurns-
to-scale phenomena at particular points. Thus at the point (L, K) the production
function exhibits local

constant =
increasing > returns to scale  if fML,NK)< > >Af(L,K), allA > 1.
decreasing < (8.3.5)

The constant-returns-to-scale case, that in which the production function exhi-
bits (global) constant returns to scale for all positive A, is that in which it is posi-
tive homogeneous of degree one (sometimes called “linearly homogeneous™),
satisfying

FOLAK) = M(L,K), alix >0, al(L,K). *(8.3.6)

In this case, at any levels of the inputs, scaling both inputs by the same multipli-
cative factor scales output by the same multiplicative factor. Then Euler’s
theorem on homogeneous functions implies that

I v Y k= k. (83.7)
oL 3K

This condition implies, from (8.2.6), assuming perfect competition, that

wL + rK = pf(L,K). *(8.3.8)

Here the left-hand side is total income, the sum of labor income and capital
income, w and r being the wages rates of labor and capital, respectively. The
right-hand side is the value of output, given as output price times the level of
output. Condition (8.3.8) thus states that, assuming profit maximization and
perfect competition, a constant-returns-to-scale production function implies that
total income equals total output. This result is sometimes called the “adding-up
theorem.” More generally, the production function is positive homogeneous of
degree £ if

FOMLAK) = N'A(L,K),  allx >0, all(L,K) (8.3.9)

the case # = 1 being that of constant returns to scale. If the production function
is homogeneous of degree 4 and & > 1, then it exhibits (global) increasing re-
turns to scale, while if # <1 it exhibits (global) decreasing returns to scale.'?

120f course, production functions need not be homogeneous of any degree. A local measure
of returns to scale is given by the elasticity of production at the point (L, K):
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The production function is said to be homothetic if it can be expressed as

y = Flg(L,K)] (8.3.10)

where F'is a monotonic increasing function of a single variable and g is a func-
tion that is homogeneous of degree one in L and K. The case of homogeneity of
degree one of the production function, as represented by (8.3.6), is thus a
special case of homotheticity. Homotheticity ensures that all isoquants, as in
Figure 8.1, are “‘radial blowups” of a given isoquant, since the isoquants passing
through a given ray from the origin all have the same slope.

Another important property of production functions, in addition to that of
returns to scale, is that of the substitutability of inputs for one another. A local
measure of such substitutability is the elasticity of substitution o, defined as the
ratio of the proportionate change in the ratio of factor inputs (called “factor

proportions”) to the proportionate change in the ratio of marginal products (the
marginal rate of technical substitution at given levels of inputs): '

o _ _din(k/L) _ din(K/L)
dIn (MPL /MPK) d In (MRTSLK)

#8.3.11)

In this definition the numerator involves the ratio of capital to labor, while the
denominator involves the ratio of the marginal product of labor to that of capi-
tal, ensuring that o is nonnegative.

Assuming perfect competition and profit maximization, the ratio of the mar-
ginal products is the ratio of the factor prices, as in (8.2.7). Thus ¢ can, under
these assumptions, be written

_dIn(K/L) _ d(KIL)(KIL) _ (w]r) d(K/L)
din(w/r)  d(w/r)/(w/r) (K/L) d(w/r)

*(8.3.12)

The elasticity of substitution is thus a measure of how rapidly factor proportions
change for a change in relative factor prices. It is therefore a measure of the cur-
vature of the isoquants. Figure 8.3 illustrates o by showing isoquants for each of
two production functions. In this case isoquant 1 exhibits greater elasticity of
substitution than isoquant 2, since the same change in relative factor prices eli-
cits for 1 a greater change in factor proportions, shown geometrically as the

change in the slope of the ray from the origin to the tangency between isocost
and isoquant.

i where -(-i—L = ﬂ(’

L K
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i
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< I
Lo

and thus is defined for an equal proportional change in each of two inputs. See Problem
8-G.

13See Allen (1938)
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Figure 8.3 Elasticity of Substitution of Isoquant 1 > Isoquant 2

One of the most widely used production functions for empirical estimation
is the Cobb-Douglas production function, of the form™

y = AL®KP *(8.3.13)

where A4, «, and § are fixed positive parameters. This specification is identical to
that of the last chapter for constant elasticity demand functions. In this case the
exponents are the elasticities of output with respect to each input:

L3 K 3
Y Y g<ca<1,0<8<], atB<I

« :
v oL y oK (8.3.14)

The constancy of these elasticities is a characteristic of the Cobb-Douglas pro-
duction function, and the inequalities in (8.3.14) ensure that conditions (8.3.2)-

(8.3.4) are satisfied. The sum of the elasticities is the degree of homogeneity of
the function, since

FONL AK) = ALY (AK)P = NP4L*KP = AP f(L, K). (8.3.15)

14 See Douglas (1948) and Nerlove (1965).
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The Cobb-Douglas function is linear in the logarithms of the variables. Con-
sidering cross-section studies, the Cobb-Douglas function for the ith firm, after
taking logarithms and adding a stochastic disturbance term u; to account for
variations in the technical or productive capabilities of the ith firms, is'®

Iny; =a +alnl; + fInK; + u; (a = InA). *(8.3.16)

It is assumed here that the parameters a and § (and also the prices) are the same
for all firms, differences among firms being summarized by the u;. One way of
estimating the parameters a, «, and § is to estimate this equation directly, given
data on output y;, labor input L;, and capital input K;. Since such data are often
not available, especially data on capital, the function has generally been esti-
mated indirectly. Even if these data were available, however, a direct estimation
of (8.3.16) would be a somewhat questionable procedure, since the explanatory
variables In L; and In K; are endogenous variables, jointly determined with In y;,
and are not independent of the stochastic disturbance term, leading to a problem
of simultaneous-equations estimation, specifically an endogenous explanatory
variable. They also tend not to be independent of one another, leading to a
possible problem of multicollinearity. Furthermore, the variance of the stochas-
tic disturbance term need not be constant, leading to a problem of heteroske-
dasticity.

The classical approach to estimating the Cobb-Douglas production function
is to assume perfect competition and profit maximization, so conditions (8.2.6)
are applicable. These conditions require that marginal productivity equal the real
wage:

o =1 pg=t %(8.3.18)

Here the common denominator is py;. the value of output. The numerator wil; is
payments to labor, and the other numerator, #K;, is payments to capital. Thus,
these conditions require that labor's share of total income be the parameter o,
while the share of capital be the parameter §3. Since the total value of output
equals total income (the sum of labor income and capital income),

py; = wL; + rK; (8.3.19)

1S An additive stochastic disturbance term here means that in the original formulation the
stochastic disturbance is multiplicative, (8.3.13) taking the form

B U
yi = AL I-K?e ¢

The multiplicative nature of this stochastic disturbance term is justified mainly by con-
venience.
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conditions (8.3.18) and (8.3.19) require that
a+ 8= 1. (8.3.20)

This condition is precisely the condition that the Cobb-Douglas function exhibit
constant returns to scale.
Assuming constant returns to scale, equation (8.3.16) implies that

Iny; =a+alnl; + 1 — a)lnkK; + u; (8.3.21)

which, further, implies that

. K.
In (y_, =qg + (1 — a)ln (——5)+ u;. *(8.3.22)
L; L;

This equation is the production function in intensive form, relating output per
worker to the capital-labor ratio. Estimating this equation yields an estimate of
1 — «a, the elasticity of output with respect to capital, where « is the elasticity
with respect to labor. Using this equation rather than (8.3.16) also reduces the
problems of multicollinearity and heteroskedasticity; the use of ratios to reduce
the problem of heteroskedasticity having been discussed in Section 6.3.

An alternative method of estimation, assuming constant returns to scale,
perfect competition, and profit maximization, is based on the share of labor
income in output. From (8.3.17) and constant returns to scale

WL i
PYi

o = =57, B=1-—a« *(8.3.23)

where s; is the share of labor in national income. Thus the shares yield direct
estimates of both & and 8 under these assumptions.!® This method requires no
data on capital inputs, either in total [as in (8.3.16)] or relative to labor [as in
(8.3.22)], but it does depend on the assumption of constant returns to scale and
hence cannot be used to test hypotheses about returns to scale.

Assuming constant returns to scale, perfect competition, and profit maximiz-
ation, the marginal-productivity equation (8.3.17) implies a log linear relation
between output per worker and the real wage:

In 4 In g In a. (8.3.24)

L; p
Adding a stochastic disturbance term to this relation, to account for errors made
by firms in choosing inputs so as to maximize profits, leads to a regression equa-

tion. The estimated intercept then provides an estimate of the (negative of the
logarithm of the) elasticity a.

16 With cross-section or time-series data the shares can be estimated as the geometric means
of shares calculated for each production unit or at each time period. See Problem 8-K.
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There are, then, at least four different methods of estimating the parameters
of the production function, involving alternative assumptions and econometric
problems.!” The first is that of estimating the production function itself in log
linear form, (8.3.16). This method requires no further assumptions, e.g., as to
returns to scale, but it typically leads to econometric problems of simultaneity
(endogenous explanatory variable), multicollinearity, and heteroskedasticity.
The second method is that of estimating the intensive production function in log
linear form, (8.3.22). This method reduces the problems of multicollinearity and
heteroskedasticity, but it does require the assumption of constant returns to
scale and hence cannot be used to test for increasing or decreasing returns to
scale. It also has an endogenous explanatory variable. The third and fourth
methods, those of factor shares, (8.3.23), and of the marginal productivity rela-
tion, (8.3.24), respectively, eliminate the simultaneity, multicollinearity, and
heteroskedasticity problems, but require the assumptions of constant returns to
scale, perfect competition, and profit maximization. None of these methods
dominates the others. Each is appropriate in particular situations, depending
upon what can be assumed and what is to be investigated.'® The resulting para-

17See Walters (1963) and Nerlove (1965). A fifth method is discussed in the next footnote.

18 A fifth method is to estimate the simultaneous system consisting of the production func-
tion and the first order conditions for profit maximization

Yi = AL?K?eui

v _ i _w,
oL; L; p

Vi

____—-6_&2_’:3

0K K; p

Here u; is a technical disturbance term, affecting the efficiency of the production process,
and v; and w; are economic disturbance terms, affecting the attainment of the two profit-
maximization conditions. Taking logarithms gives the linear system

Iny; =a + alnl; + gInK; + uy;

Iny; = —lna + InL; + In 2 + v
Iny; = —Ing + InK; + In - + w;

which is the structural form for a system in which In y;, In ;, and In K; are the endogenous
variables and In w/p and In r/p are the exogenous variables (assuming perfect competition).
Sec Marschak and Andrews (1944), Nerlove (1965), Hildebrand and Liu (1965), Zellner,
Kmenta, and Dreze (1966), Griliches and Ringstad (1971), and Problem 8-I. The first
method of estimation entails estimating only the first equation of this system. Estimating
the complete system is generally superior to estimating only the first equation from both
economic and econometric standpoints. From an economic standpoint estimating the com-
plete system expresses the assumption that the data reflect both the behavior of the decision
maker (the firm) and the technology, while the first equation reflects only the technology.
From an econometric standpoint the estimator of only the first equation involves simul-
taneous-equations bias, so the estimators will be biased and inconsistent, as discussed in
Chapter 11.
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meter estimates will generally be different, and there is little evidence to suggest
which estimates come closest to true values.

Table 8.1 presents some estimates of the Cobb-Douglas production function
for the macroeconomy of a nation or state using time-series data and the tech-
nique of least squares, as applied to (8.3.16). The discussion of the previous
section referred, however, to a single firm. Estimates of production relationships
for macroeconomies, such as those of Table 8.1, are based upon the further
assumption that the macroeconomic entity acts as if it were representative of the
underlying microeconomic entities.’® The index i then ranges over time.

The four alternative estimates for the United States and the two alternative

estimates for New Zealand in Table 8.1 are based on alternative ways of measur-

ing inputs and output. Douglas concluded, based on the results reported in this
table and other results (some based on cross-section rather than time-series
cata), that production exhibits approximately constant returns to scale. He also
concluded that the factors of production receive approximately the share they
would receive under competitive conditions, given as the elasticity of output
with respect to the factor. Later authors have questioned these conclusions,
however. One criticism was based on the multicollinearity in the data used.
Another was based on the condition that the total value of output equal total in-
come (8.3.19), which creates a bias of the estimated production function toward

these results.’® To show this bias, using index numbers in (8.3.16), it follows
that (ignoring the stochastic disturbance term)

. L. K.
m”l = alnZt + gin = (8.3.25)

Vi L; K;

where 7;, K;, and L; are base-year quantities of output, capital, and labor, respec-
tively, for the 7/th firm.?! But if y;, K;, and L; do not vary appreciably from the

19 Formally, under certain aggregation conditions, it may be possible to aggregate micro-
economic production functions into macroeconomic production functions. The aggrega-
tion conditions here are comparable to those for a household, as discussed in Section 7.7.
Several new issues arise here, however, with regard to aggregation. One is that of reswitching,
where different ratios of inputs are used at different ratios of input prices. Others are
efficiency and technical change, which are both affected by and affect aggregation of micro
production functions into macro production functions. Also some exogeneity assumptions
change (e.g., factor prices). On the general problems of aggregation see Walters (1963),
Green (1964), and Problem 8-K. For a study of efficiency and aggregation see Houthakker
(1955-6), who derived a macro Cobb-Douglas production function on the basis of micro
fixed-coefficients (input-output) production functions [introduced in (8.3.33)], assuming a
specific probability distribution (the Pareto distribution) of firms over possible values of the

input coefficients. Generalizations and related approaches appear in Johansen (1972) and
Sato (1975).

20g5ee Cramer (1969). The bias toward constant returns to scale is an example of the practi-
cal problem stemming from the aggregation problem, as previously discussed in Section 7.7.
Aggregate output is calculated from the total value of payments to factors of production, so
using this value for output to test for returns to scale is questionable. Similarly, if aggregate
capital data are constructed by subtracting the value of labor input from the value of output
and deflating then a test of returns to scale is aiso questionable.

21 The intercept drops out of the equation, since, if

N e
yi = ALSKS 5, = a1%K?
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Table 8.1. Estimates of the Cobb-Douglas Production Function

Labor Capital Returns Average
Country, Elasticity Elasticity ro Scale Labor Share
Time Period « B3 a+f ST,
United States 0.81 0.23 1.04 0.61
1899-1922 (0.15) (0.06)
United States I 0.78 0.15 093 0.61
1899-1922 (0.14) (0.08)
United States 11 0.73 0.25 0.98 0.61
1899-1922 (0.12) (0.05)
United States [V 0.63 0.30 (.93 0.61
1899-1922 (0.15) (0.05)
New Zealand I 0.42 0.49 0.91 0.52
1915-1916 and (0.11) (0.03)
1918-19335
New Zealand Il 0.54 .54
1923-1940 (0.02)
New South Wales, Australia 0.78 0.20 0.98
1901-1927 (0.12) (0.08)
Victoria, Australia 0.84 0.23 1.07
1902-1929 (0.34) (0.17)
Source Douglas (1948).
NOTE  Numbers in parentheses are standard errors.
base quantities, the ratios are close to unity, so
. : L: L. K. K
LRV S P P M A T i (8.3.26)
Yi Vi Ly L K; K
Thus (8.3.25) implies that
Vi L; K;
a4 (1 —a - B) (8.3.27)
Vi Lf Kf

then, taking ratios,

Taking logarithms of this equation yields (8.3.25).
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so that

py; = (o:p %i) L; + @p I,—?—) K;+ (1 — a— Bpy. (8.3.28)

] i

Comparing this equation to (8.3.19), however, it follows that

ap—-Ll’i ~ W, Bp—% ~r, (1-—a-@p=~0. (8.3.29)

i i
These results imply that

a+f~1 (8.3.30)

L; K;
Mixa, Zlap (8.3.31)
PYi Dy;

which means that factor shares are approximately the elasticities, @ and f, the
shares received under competitive conditions. Thus, assuming only small varia-
tions in output and inputs, the form of the production function and the equality
of the values of output and income imply that the production function exhibits
approximately constant returns to scale and that factor shares are approximately

the elasticities.
A second example of the Cobb-Douglas production function is the estimation

by Kimbell and Lorant of a production function for physicians’ services.”” The
data were obtained from an American Medical Association survey of physician
activities in 1970. Altogether there were 844 observations on physicians in both
solo and group practices. The estimated function is

In (py) = 2.826 + 0.255Inh + 0.708Ind + 0.3021na (8.3.32)
(0.052) (0.037) (0.030)

+ 0.074Inr, RZ? = 0.906.
(0.042)

Here py is gross revenue from medical practice, a measure of output for the
heterogeneous services provided by physicians; k is the average number of hours
worked by (full-time) physicians in the practice; d is the number of (full-time
equivalent) physicians in the practice; @ is the number of (full-time equivalent)
allied health personnel (e.g. nurses) employed by the practice; and r is the num-
ber of rooms used in the practice, a measure of capital input. According to these
results, the elasticity of gross revenue with respect to physicians’ hours is 0.255,
so a 10% increase in hours would increase gross revenue by about 2.6%. The

22 See Kimbell and Lorant (1974)
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elasticity for aides implies that increasing the number of aides by one-third
would increase gross revenue by about 10%. The sum of the elasticities is 1.084,
which is significantly greater than unity at the 0.01 confidence level, indicating
increasing returns to scale for physicians’ services.

Another form of the production function is the input-output production
function,®

L K
y = mm ('{l"s_b_) ] asb > 0 *(8.3.33)
a

Here the isoquants are right-angled (L-shaped), as shown in Figure 8.4, and the
production function permits no substitution between the inputs. The condition
of profit maximization, given positive factor wages, is

L K
- = — (8.3.34)
a b
that is, operation at the vertex of the isoquants. Then
L K
a=—, b=— (8.3.35)
y y

so the parameters a and b are, respectively, the input of labor per unit of output
and the input of capital per unit of output—the fixed proportions of inputs to
output. The equations in (8.3.35) are typically used to estimate the parameters
a and b, which are called “technical coefficients.” The estimation is typically
based on a single observation, so regression techniques are not used. The esti-
mated production function is used in input-output studies concerned with the
interrela\tionships among productive sectors that arise from the fact that the in-
puts of any one sector consist of portions of the outputs of other sectors.**

One of the most widely used production functions in empirical work is the
constant elasticity of substitution (CES) production function, of the form?

y = A[BL™F + (1 — 8)K P17, *(8.3.36)

23 Gee Leontief (1951, 1966) and Chenery and Clark (1959).

* Let x;; be the input of commodity 7, as produced by sector , that is used in the produc-
tion of commodity j by sector j. If x; is the output of sector j, then the technical coeffi-
cients comparable to (8.3.35) are given as

aj =2, ij=1,2...,n
Xj
See Intriligator (1971).

25See Arrow, Chenery, Minhas, and Solow (1961), Brown and de Cani (1963), and Minhas
(1963). Note that 8 here plays an entirely different role from the f§ in the Cobb-Douglas
production function.
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0

Figure 8.4 Isoquants of tie CES Production Function Cor-
responding to Different Vilues of the Elasticity of Substi-
tution, o

The parameters defining this produ:tion function are

A: scale parameter, 4 > 0
§: distribution parameter, 0 <§ <'1
B: substitution parameter, 3 2—1.

The name of the function is based ipon the concept of the elasticity of substitu-
tion, o, defined in (8.3.11). In general, the elasticity of substitution o varies with
K and L. Assuming o is constant, 10wever, and solving the resulting differential
equation yields, in the constant-returns-to-scale case, precisely the CES function,
where

g = — *(8.3.37)

justifying the interpretation of fas the substitution parameter. As defined in
(8.3.11) 0 must be nonnegative, sc

8> - 1. (8.3.38)
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At the extreme value of § = —1 the CES function reduces to the linear function
vy = AL + (1 ~ §)K] if g = —1,1e., 0 = o *(8.3.39)

The isoquants for this case are linear, the slope of each being —§/(1 — §). In this
case of perfect substitution ¢ = oo, meaning that certain slight changes in w/r
would lead to discontinuous changes in K/L, e.g., from one boundary point to
another. At the other extreme value for 8, namely in the limit as § approaches oo,
from (8.3.37), o approaches zero and, in this case, in the limit of the CES as
B — oo, it approaches the input-output production function, as in (8.3.33):

(L K , .
Yy = min (“b) if B0 ie., o0—0, (8.3.40)
a

In the limit as B approaches zero, o approaches unity; this is the case of the
Cobb-Douglas production function, where, taking the limit as § - O, the CES
approaches (8.3.13)

y = AL°K' % if f—0,ie.,0 —>1. (8.3.41)

Thus the CES is a family of production functions that includes, as special cases,
the Cobb-Douglas, input-output, and linear production functions. The isoquants
of these various cases are shown in Figure 8.4, and estimation of o gives informa-
tion on the curvature of the isoquants. It might be noted that the isoquants of
the CES production function intersect the axes if ¢ > 1, and they are asymptotic
to horizontal and vertical lines if o < 1.%

The CES can be estimated by using the conditions of profit maximization
(8.2.6). The marginal product of labor can be written

1+3
W _ g (%i (8.3.42)
oL L
where A’ is a constant, so setting the marginal product equal to the real wage
yields
N TR
A () = —, (8.3.43)
L p
Solving for output per manhour (labor productivity) y/L,
LN A (8.3.44)
L p

s0, taking logs, and using (8.3.37):

26 Gee Problem 8-N. As noted there, the case ¢ > 1 is excluded if both factors are essential
in that output is zero if either factor input is zero—conditions (8.3.2). The case o < 1 is
consistent with factors being essential in this sense.
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1 I
n? =4+ mY =z+oln’, a4=1Ind" (8.3.45)

L 1 + 0 p D

This equation relaies output per worker to the real wage, where 2 and o are con-
stants, o being the coefficient of In (w/p). The special case of the Cobb-Douglas
for which ¢ = 1 was presented earlier in (8.3.24). Equation (8.3.45), with an
additive stochastic disturbance term on the right-hand side, can be estimated
using least-squares regression. Alternatively the equation can be solved for the
real wage and the resulting equation,

W !
mY =4+ (1 + 8 (8.3.46)
p L

in which the dependent and explanatory (exogenous) variables have switched
roles, can be estimated to obtain 1/(1 + ) as an estimate of o. Such an estima-
tion could, for example, utilize cross-section data on output, y, labor, L, and the
real wage, w/p, assuming the real wage is exogenous and all entities in the cross
section use the same underlying production function. This was the approach
used by Arrow, Chenery, Minhas, and Solow, who estimated ¢ in (8.3.45) using
cross-section data for specific industries from 19 different countries over the
period 1950-1956. They found that their estimates of ¢ tended to cluster below
unity, with 10 out of 24 industries having an estimated ¢ statistically different
from (and below) unity. Their approach was extended by Fuchs who, using the
same data, distinguished developed from less developed countries in the sampie
of 19 countries. He showed, using analysis of covariance, that the developed and
less developed countries exhibit different intercept ¢ in (8.3.45), but the same o,
and he reestimated o, using a dummy variable to reflect the different intercept in
the developed countries.?” His results for o are presented in Table 8.2, where
industries are arranged in order of increasing estimated ¢. The estimates tend to
cluster about unity, ranging from a low of 0.658 for clay products to a high of
1.324 for grain and mill products. Only one of the estimates is statistically signi-
ficantly different from unity. This one exceptionis glass, for which the estimated
o is significantly above unity, indicating a greater ease of substitution between
capital and labor than that indicated by the Cobb-Douglas function. Since this is
the only such case out of 24 industries, the Fuchs study provides justification
for continued use of the Cobb-Douglas function. Various other studies also find
that the estimated elasticity of substitution does not differ significantly from
unity, justifying use of the Cobb-Douglas production function.?®

The CES production function can be extended to the case of nonconstant
returns to scale, but homogeneous case, for which the function can be written

y = A[LF + (1 — §)K F) "k *(8.3.47)
where h is the degree of homogeneity of the function. This case reduces to

27See Fuchs (1963).
8See Griliches (1967), Zarembka (1970), and Griliches and Ringstad (1971). Griliches
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Table 8.2. Estimates of g, the Elasticity of Substitution for 19 Countries,

1950-1956
Estimated Estimated
Industry Elasticity of Industry Elasticity of
Substitution Substitution
) a
Clay products 0.658 (0.197) Furniture 1.043 (0.090)

Iron and steel
Sugar

Dairy products
Pulp and paper
Nonferrous metals
Knitting mills

Leather finishing
Textile spinning
Metal products
Printing and
publishing
Electrical
machinery

0.756 (0.112)
0.898 (0.183)
0.902 (0.080)
0.912 (0.173)
0.935 (0.197)
0.948 (0.083)

0.975 (0.100)
0.976 (0.104)
1.006 (0.166)
1.021 (0.085)

1.026 (0.214)

Bakery products
Fats and oils
Misc. chemicals
Ceramics
Lumber and wood
Fruit and vege-
table canning
Basic chemicals
Tobacco
Glass
Cement

Grain and mill
products

1.056 (0.105)
1.058 (0.181)
1.060 (0.088)
1.078 (0.125)
1.083 (0.141)
1.086 (0.098)

1.113 (0.104)
1.215 (0.208)
1.269 (0.096)
1.308 (0.217)

1.324 (0.167)

Source Fuchs (1963).

(8.3.36) if & = 1, the constant-returns-to-scale case. The general function was
estimated by Dhrymes using cross-section data on U.S. states.?® Some of his
results are shown in Table 8.3. From his results for 7, most industries operate at

(1967) found only one industry (paper) out of 17 in which use ot the Cobb-Douglas produc-
tion function was not justified. It might be noted, however, that Nerlove ( 1967), in survey-
ing over 40 papers, found conflicting estimates of the elasticity of substitution, with values
ranging from 0.068 to 1.16. He concluded that the estimates are sensitive to the period
under consideration and the concepts employed. In a later survey, Mayor (1969) found that
studies using cross-section data obtain estimates of the elasticity of substitution close to
unity while those using time-series obtain estimates considerably less than unity, clustering
around one-half. Johansen (1972) attributes this difference between cross-section and time-
series studies to the “putty-clay” nature of technology, according to which substitution
possibilities are reduced once investment has occurred and capital is in place. Johansen
suggests that the firm decides factor proportions before investment in new plant and equip-
ment occurs and that, after this investment has occurred, subsequent decisions involve only
the scale of operation. Cross-section estimates may reveal ex-gnte substitution possibilities,
before capitalis in place, and so exhibit relatively high elasticities of substitution. Time-series
estimates, by contrast, tend to reveal ex-post substitution possibilities, after capital is in
place, and so exhibit relatively low elasticities of substitution. For further discussion of the
putty-clay model, which distinguishes ex-ante and ex-post substitution possibilities, such as
substitution possibilities ex-ante but fixed coefficients ex-post see Johansen (1959, 1972)
and Bliss (1968).

29Gee Dhrymes (1965) and Kmenta (1967) and Zarembka (1970). See also Brown and
de Cani (1963), where the derivation and estimation of the CES production function
allowed for i # 1.
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Table 8.3. Estimates of the CES Production Function for the United States

Elasticity of Degree of
Industry Substitution o Homogeneity h

Machinery, except

electrical 0.050 } exfremes 1.029
Rubber products 1.984 { 1.092
Textile mill

products 0.936 closest to unity { 0.997
Lumber and wood } extremes

products 1.109 1.218 '
Furniture and

fixtures 1.001 } closest to unity 1.017
Chemicals 0.506 1.042
Food 0.469 1.044

Source Dhrymes (1965). Results have been rounded.

or above constant returns to scale (& = 1), with textile mill products exhibiting
the lowest degree of homogeneity. From his results for g, most consumer goods
(e.g., textile mill products, furniture) are produced with an elasticity of substitu-
tion of approximately unity, i.e., close to the Cobb-Douglas production function.
Most producer goods (e.g., machinery, chemicals), however, are produced with
an elasticity of substitution significantly below unity, approaching in some cases
the input-output production function. However, other studies have arrived at
radically different results for certain industries. The study by Ferguson, for
example, of U.S. manufacturing industries, using time-series data from the U .S.
Census for 18 industries, 1949-1961, tound an estimate of ¢ for non-electrical
machinery of 1.041 (0.04), in contrast to the Dhrymes value of 0.050, and for
chemicals of 1.248 (0.072), in contrast to the Dhrymes value of 0.506. Some of
the other industries yielded somewhat comparable estimates, however-—for
example, for textile mill products [1.104 (0.44) vs. 0.936], lumber and wood
[0.905 (0.067) vs. 1.109], furniture and fixtures [1.123 (0.045) vs. 1.001], and
food [0.241 (0.20 vs. 0.469] .*°

It has already been noted that the Cobb-Douglas production function is a
special case of the CES production function, corresponding to an elasticity of
substitution of unity. Conversely the CES production function can be viewed as
a generalization of the Cobb-Douglas production function to the case of a non-
unitary, but constant, elasticity of substitution. For example, expanding ln y in
a Tavlor’s series approximation of the CES around g = 0 yields™!

3 See Ferguson (1965) and Nerlove (1967).

31See Kmenta (1967). This approximation can be used to estimate the parameters of the
CES production function. Using this approach, Kmenta estimated o as 0.672 and /1 as 1.179.
Neither  of these estimates, however, was significantly ditfferent from unity, so a Cobb-
Douglas production function with constant returns to scale is not ruled out by his findings.
It should be noted, however, that the estimated o is not invariant to a change in units of
measurement.
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Bhé(1 — &)

Iny =ag+ hInl + (1 — §)InK — (InL — InK)?

(8.3.48)

The first several terms on the right are those of the Cobb-Douglas production
function, and the last term accounts for ¢ # 1. This approximation is better the
closer the elasticity of substitution is to unity, and it reduces to the Cobb-
Douglas case if § = 0.

While the CES production function represents one generalization of the
Cobb-Douglas production function, the Cobb-Douglas has also been generalized
in several other ways. One such way is the transcendental production function,
of the form>?

y = AL®KPe LK 4 >0, o, p <O (8.3.49)
This case reduces to the Cobb-Douglas if o' and B’ vanish. Taking logarithms
Iny =a +alnl + BInK + &'L + 'K (8.3.50)

so In v is a linear function of the inputs L and K, as well as the logarithms of the
inputs In L and In K. For this function it is possible for marginal products to rise
before eventually falling. This function also permits variable elasticity of produc-
tion and variable elasticity of substitution over the range of inputs.

A second approach to generalizing the Cobb-Douglas production function is
the Zellner-Revankar production function. of the form*

ve® = AL*KP, ¢ = 0. (8.3.51)
This case reduces to the Cobb-Douglas form if ¢ = 0. Taking logarithms,
Iny + ¢y =a +alnl + Ink. (8.3.52)

This case is essentially the obverse of the transcendental case. In the transcen-
dental case inputs and logarithms of inputs enter on the right-hand side, while in
this case output and the logarithm of output enter on the left-hand side.

A third approach to generalizing the Cobb-Douglas production function is the
Nerlove-Ringstad production function, of the form3?

plireny = g12kP ¢ > 0. (8.3.53)
This case reduces to the Cobb-Douglas form if ¢ = 0. Taking logarithms,
(1 +clny)lny =a + alnL + 8InK (8.3.54)

so In v and (In v)* appear on the left-hand side.

32Gee Halter, Carter, and Hocking (1957). Note that o’ and g’ are not invariant to a change
in units of measurement. For a discussion of other functional forms not necessarily related
to the Cobb-Douglas production function see Heady and Dillon (1961).

33See Zellner and Revankar (1969).
34 See Nerlove (1963) and Ringstad (1967).
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A fourth approach to generalizing the Cobb-Douglas production function is
the translog production function, of the form>®

Iny =a + alnl + flnK + yInLInK + 8(nL)* + e(lnK)*. *(8.3.55)

This function, which is quadratic in the logarithms of the variables, reduces to
the Cobb-Douglas case if the parameters vy, 8, and € all vanish; otherwise it exhi-

bits nonunitary elasticity of substitution. In general this function is quite flexible
in approximating arbitrary production technologies in terms of substitution
possibilities. It provides a local approximation to any production frontier.’®

The last several production functions are extensions of the Cobb-Douglas pro-
duction function. The CES production function has also been generalized in
different ways. One such generalization is the two-level production function.?”
For this function factors are combined according to the CES at one level to form
“higher-level” factors, which are combined again according to the CES to pro-
duce output. An example is the production function

yo= A {BxF o+ (1= 8y, ] . (8.3.56)
~1
+ [5ox57 2 + (1 — 83)xzP | PP}

Here x, and x, are combined into a “higher-level” factor, where the elasticity
of substitution is (1 + 8;)"!, while x3 and x, are combined with an elasticity of
substitution of (1 + B8,)~". The “higher-level” inputs are then combined with an
elasticity of substitution of (1 + B)!. Another generalization of the CES is the
VES production function, i.e., the variable-elasticity-of-substitution production
function.?® For this function the elasticity of substitution varies with the factor
proportions (the ratio of the inputs). Such a relationship can be estimated by
regressing the log of output per worker on both the real wage [as in (8.3.45)]
and the capital-labor ratio.>

35 “Translog” is short for “transcendental logarithmic”. See Christensen, Jorgenson, and Lau
(1973) and Griliches and Ringstad (1971). More generally, for # inputs, the translog func-
tion is

n R

n
Iny =a + 2 a; In x; + -l: DI 'yijlnxflnxj
i=1 i=1Jj=1

where x; is the ith input and «;; = vj;- Note that this function is also not invariant to a
change of units.

36 It can also be applied to other frontiers, e.g., to demand functions or to price frontiers.
37See Sato (1967).

38Gee Sato and Hoffman (1968); see also Lu and Fletcher (1968), Revankar (1971), and
Lovell (1973).

39 Gee Hildebrand and Liu (1965). In most industries the coefficient of the capital-labor
ratio is significant.
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8.4 Estimation of cost curves and cost functions

Cost curves, based on economic theory, were developed in Section 8.2,
equations (8.2.14)-(8.2.20), and illustrated in Figure 8.2. A variety of cost
curves, including total, average, and marginal cost curves, have been estimated
empirically for particular industries.*®

A simple example of a total cost curve that satisfies the curvature postulated
in Figure 8.2 is the cubic cost curve,

C=ag +ay + ay* + azy’ ¥(8.4.1)

where a4, a1, a5, and a5 are given parameters. The average cost associated with
the cubic cost curve is

o
AC = —; +a; + a,y + azy? (8.4.2)

and marginal cost is given as
MC = a; + 2a,y + 3a3y*. (8.4.3)

For U-shaped average and marginal cost curves, as illustrated in Figure 8.2, the
parameters must satisfy the restrictions

a0 >0, a; >0, a, <0, a3 >0, a5 < 3aza (8.4.4)

where ag is the fixed cost, the cost at zero output,

Empirical studies of cost curves typically estimate a long-run cost curve using
cross-sectional data on firms in the industry, specifically data on total costs, out-
put, and other relevant variables. Assuming that the same technology applies to
all firms, that observed outputs are close to planned outputs, and that firms are
seeking to minimize costs at each planned output level, it follows that the cost
curve estimated from a scatter diagram of cost-output points represents an esti-
mate of the long-run cost curve. The specific curve estimated is usually an
average cost curve; and taking ratios as called for in such a curve reduces prob-
lems of heteroskedasticity.*' In the long-run case, @, in the cubic cost curve
(8.4.1), which is fixed cost, vanishes, and so the average cost curve in this case is

AC = a; + ayy + asy’. (8.4.5)

40 Eor surveys of cost curves see Johnston (1960) and Walters (1963, 1968). For cost func-
tions see Shephard (1970).

41 Note that if u isan additive stochastic disturbance term for the total cost curve and Var (i)
= Ky?, where K is a positive constant, ther: Var (1/y) = K; with this assumption the additive
stochastic disturbance term in the average cost curve exhibits constant variance for all levels
of output y.



